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An extremely basic model is postulated and examined numerically, to "nd out which aspects of
observed steady-#ow collapsible-tube behaviour are predicted and can be explained. The model
in simplest form states that the tube has a "xed viscous resistance per unit length when not
collapsed, and a higher one when collapsed. Collapse occurs where the falling internal pressure
in the streamwise direction causes negative transmural pressure to pass a "xed threshold set by
tube wall sti!ness. This model su$ces to explain (i) the sigmoidal dependence of pressure drop
on #ow rate when external pressure is "xed, (ii) the weak dependence of pressure-drop on #ow
rate when downstream transmural pressure is "xed and (iii) the weak dependence of #ow rate
on pressure drop when upstream transmural pressure is "xed. The e!ects of incorporating more
realistic collapse behaviour ("nite compliance once the tube buckles, varying compliance once
opposite walls are in contact) on these dependencies are examined. The model is also used to
explore the several qualitatively distinct con"gurations that may be taken up by a tube which
varies in sti!ness along its length. (2000 Academic Press
1. INTRODUCTION

STEADY FLOW THROUGH COLLAPSIBLE TUBES has been investigated in detail through experi-
mental, theoretical and numerical studies. While sophisticated models are certainly neces-
sary in the quest for quantitative agreement with observed behaviour, they are not
necessarily optimal for showing what aspects of a collapsible tube must at minimum be
included to model a given behaviour qualitatively. One of the simplest possible models for
steady #ow through a collapsible tube is the one in which the tube has one resistance per
unit length when collapsed, and a lesser one when not (Fry et al. 1980). It is of interest to
explore how much of collapsible-tube behaviour can be seen in (or explained by) such
a simple model.

Already the above model de"nition implies some further assumptions (or idealizations or
simpli"cations, depending on one's point of view) about the tube behaviour. Most impor-
tantly, this statement de"nes a &&tube law'', accepted jargon for a purely local relation
between transmural pressure and cross-sectional area. While such an assumption underpins
many, much more sophisticated models than this one, it is not true; the local tube
cross-sectional area is also a!ected by any di!ering cross-sectional area in neighbouring
cross-sections (Bertram 1987; Elad et al. 1992; Heil & Pedley 1996). Secondly, the statement
assumes a particular form of that tube law, one in which viscous pressure drop along the
tube has no e!ect on area beyond setting the location of collapse. In reality, #ow rate causes
an area-dependent pressure drop, which changes the transmural pressure and hence
diminishes the area along the tube. In short, resistance to #ow is not constant along the
0889}9746/00/070593#20 $35.00/0 ( 2000 Academic Press
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tube, whether it is collapsed or not (the latter state will henceforth be referred to as open),
and versions of the model will be presented in which this assumption is relaxed for the
collapsed state. Thirdly, it is of course unrealistic to assume an abrupt (discontinuous)
change in area and resistance at any matching point along the tube where collapse begins or
ends. Consequences of relaxing this assumption have also been explored and will be
touched on brie#y below. But for now all such considerations will be regarded as of
secondary importance; they can modify behaviour extensively, but do not change the broad
outlines sought here. The ideas developed herein are an extension of a model used by
Bertram (1995).

The arrangement of the paper is unconventional, in that it is more sensible to present the
results from each variant of the model in close association with the description of the model
itself; thus, rather than separate methods and results, the next two sections of the paper
present "rst uniform-tube models, then tapered-sti!ness models. The results are discussed in
Section 4, and the conclusions are brought together in Section 5.

2. UNIFORM TUBES

2.1. THE BASIC MODEL

It will be assumed that all pressures are relative to that at the exit from the system, i.e. the
downstream end of whatever apparatus lies downstream of the collapsible tube. The
simplest situation experimentally is then to vary the upstream head p

u
and/or the pressure

external to the tube, p
e
. Beyond the tube itself, the model comprises a resistance per unit

length in the upstream and downstream systems which is equal to that in the collapsible
tube when it is open. This is equivalent to assuming that the up- and downstream systems
consist of rigid tubing having the same diameter as the open collapsible tube. Collapsible
tube length is normalized to 1, such that x/¸"0 at the upstream end and x/¸ "1 at the
downstream end. The rigid pipes have length ¸

u
upstream and ¸

d
downstream, where

¸
u
"¸

d
"2 initially. In the most basic version of the model, the pressure drop Dp is given by

Dp"RDxQ,

where Dx is the distance along the tube or the rigid pipe beyond it, Q the volume #ow rate,
and the resistance per unit length, R, takes the value R

c
or R

n
depending on whether the tube

is collapsed or not. The tube is assumed to collapse when the internal pressure p (x)(p
c

locally, where p
c
"p

e
!Dp

c
for a uniform tube, p

e
is the (uniform) pressure external to the

tube, and Dp
c
, a property of the tube, is the magnitude of the negative transmural pressure

needed to cause collapse, i.e. p
c
(p

e
. The above formulation, with R"R

c
or R

n
, is

equivalent to the most basic tube law considered, which allows just two values: A"1 when
p5p

c
and A"A

c
when p(p

c
; A

c
"0)2 (Shapiro 1977; Bertram 1987). Pressure drop is

then

Dp"
k

A2
DxQ,

where k"1)5 arbitrarily. A more exact model would have k"k (A), converting the
constant to a shape factor accounting for the greater viscous resistance o!ered by noncircu-
lar cross-sections. Note that R

c
/R

n
"1/A2

c
; the resistance ratio thus takes the value 25,

although the "ndings of this paper, which are qualitative, do not depend on particular
values. Parameter values for all the various versions of the model considered in this paper
are gathered together in Table 1.



TABLE 1

Parameter settings for each of the situations considered. A blank indicates either that the parameter
did not exist in the version of the model in use, or that its value varied

Fig. ¸
u

¸
d

A
c

A
p

n R
c
/R

n
k p

c1
p
c
!p

2
p
c
!p

1
dDp

c
/dx

1 2 2 0)2 * * * 1)5 45 * * *

2 2 2 0)2 * * * 1)5 * 45 * *

3 2 2 0)2 * * * 1)5 * * !3 *

4 2 2 0)2 0)003 * * 1)5 * * !3 *

5 2 2 0)25 0)075 4 * 1)5 * * !3 *

8 0 1 * * * 4 1)5 0)2 * * !0)6
9 0 1 * * * 4 1)5 0)6 * * 0)2

10 0 1 * * * 4 1)5 1)5 * * 1)4
11a 0)5 0)5 * * * 3 1)5 0)9 * * 0)9
11b 0)5 0)5 * * * 3 1)5 1)1 * * 0)9
11c 0)5 0)5 * * * 3 1)5 1)3 * * 0)9
11d 0)5 0)5 * * * 3 1)5 1 * * 0)8
11e 0)5 0)5 * * * 3 1)5 1)1 * * 0)8
11f 0)5 0)5 * * * 3 1)5 1)2 * * 0)8
11g 0)5 0)5 * * * 3 1)5 1)3 * * 0)8
12a 0 1 * * * 4 1)5 0)7 * * !0)3
12b 0 1 * * * 4 1)5 0)8 * * 0
12c 0 1 * * * 4 1)5 0)9 * * 0)2
12d 0 1 * * * 4 1)5 1 * * 0)4
12e 0 1 * * * 4 1)5 1)6 * * 1)6

SIMPLE RESISTIVE MODELS 595
Figure 1(a) shows how the pressure in the tube itself varies for a series of di!erent #ow
rates (in dimensionless and arbitrary units), from 0)5 to 6)0 in steps of 0)5. The model of
course also yields p (x) in the rigid pipes, from a maximum of p

u
at the upstream end of

the whole system to zero at the downstream end, but the "gure concentrates on just the
collapsible segment. As #ow rate increases so must p

u
, but not in proportion. Each of the

curves with a slope discontinuity shows the tube open from the upstream end and collapsed
from the point along the tube where the slope changes. The tube collapses at the point
where p falls below the "xed value p

c
(here, 45). The tube is collapsed along its whole length

at the two lowest #ow rates. Figure 1(b) shows for each #ow rate the di!erence between the
internal pressures at the entrance and the exit of the tube, i.e. the left- and right-hand sides of
Figure 1(a). This is p

1
!p

2
, the pressure drop along the tube. Conrad (1969) and others have

shown that this pressure drop increases steeply at low #ow rates (region III), then decreases
again at higher #ow rates (thereby de"ning a region II of usually negative incremental
resistance) then increases again, but with much shallower slope, when the tube is fully open
at the highest #ow rates (region I). Figure 1(b) does not extend as far as region I, but does
display regions II and III.

The model also makes clear that the negative slope of region II is not an innate tube
property, but depends on factors external to the tube. The negative slope is a re#ection of
the fact that the variation of p

2
with Q is greater than that of p

1
when the tube collapses

along its length. However, the increase of p
2

with Q is a function purely of the resistance
provided downstream of the tube. In the case shown, the up- and downstream systems were
given a length equal to twice the length of the tube itself. If the downstream length is made
the same as the tube length, the descending limb of the curve becomes approximately #at,
and if it is made shorter than the tube, becomes a second positive limb of reduced slope. This
has implications for the use of the negative slope to predict instability (Conrad 1969).



Figure 1. (a) Curves of internal pressure variation along the length of a collapsible tube having only two states:
open or collapsed, each providing a "xed resistance per unit length to #ow. Each curve is for a di!erent value of the

#ow rate. (b) The pressure drop along the whole collapsible tube is plotted against flow rate.

596 C.D. BERTRAM
Conrad [private communication; Discussion (1995) of Yamane & Orita (1994)] has sugges-
ted that the appropriate criterion involves instead the negative slope of the relation of #ow
rate to pressure drop over that section of the tube which is collapsed. In the present context,
this pressure drop is p

c
!p

2
. However, the negative slope of d(p

c
!p

2
)/dQ in region II is still

a function of the rigid tube length or other resistance downstream. This dependence on
factors external to the tube itself is a well-known drawback of presenting pressure drop as
a function of #ow rate at constant external pressure.

2.2. PRESSURE-DROP AND FLOW RATE LIMITATION

This simplest collapsible-tube model can also be used to demonstrate pressure-drop
limitation and #ow rate limitation. These behaviours are innate to the tube; they do not
depend on external factors. Pressure-drop limitation occurs when the transmural pressure
at the downstream end of the tube is held constant. An example is shown as Figure 2. The
collapse pressure now varies with the pressure at the downstream end, such that
p
c
!p

2
"45 (arbitrary units). All other parameters being unchanged from Figure 1, the

curve of p
1
!p

2
now shows a steep section III (collapse all the way along the tube), and

a more gently sloped section II, where the pressure drop is relatively independent of the #ow
rate. Unlike the corresponding curve in Figure 1(b), this one is independent of the length of
the external rigid-tube sections, and thus re#ects purely the properties of the collapsible
tube.



Figure 2. (a) Variation of pressure along the tube when downstream transmural pressure p
e
!p

2
is constant,

and therefore p
c
!p

2
is constant. (b) Pressure drop versus #ow rate, showing pressure-drop limitation.
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Flow-rate limitation occurs when the transmural pressure at the upstream end is held
constant. This situation is substantially more di$cult to solve; it is no longer appropriate to
take a series of #ow rate values as inputs, and instead a series of values of p

u
(from 10 to 70 in

steps of 4) was prescribed. The unknowns are then the #ow rate, the collapse pressure and
the collapse position. Figure 3 shows results for p

c
!p

1
"!3; again the external length is

twice that of the collapsible tube, both upstream and downstream. The pressure drop
p
1
!p

2
now increases initially slowly (tube open along the whole length) then the slope

increases such that d(p
1
!p

2
)/dQ is greater than (p

1
!p

2
)/Q. This de"nes #ow rate

limitation; the #ow rate is now only weakly dependent on the pressure drop. Again, as for
Figure 2, the pressure-drop/#ow rate relation is independent of the downstream resistance
as represented by the length of the rigid pipe beyond the tube, although since the calculation
here starts from a value of p

u
, the location of the points along the relation varies with ¸

d
.

2.3. NEGATIVE EFFORT DEPENDENCE

Such #ow rate limitation is of physiological interest because it occurs in various body
conduits, including the small airways of the lung, the urethra, and the veins returning blood
to the thoracic venae cavae. In some in vivo situations, and also in collapsible tubes on the
bench, the #ow rate is rather more independent of the pressure drop than is the case in
Figure 3, and often even displays &&negative e!ort dependence'', a term from lung-function
testing meaning that the #ow rate decreases as the pressure drop increases. What added
features are needed in a model which can imitate this behaviour? This question was in fact



Figure 3. (a) Variation of pressure along the tube when upstream transmural pressure p
e
!p

1
is constant, and

therefore p
c
!p

1
is constant. Parameters otherwise as in Figure 1, except that instead of specifying a series of

Q values, a series of p
u
values is solved. Note that under these conditions it is the lowest two values of head which

produce no collapse anywhere along the tube. (b) Pressure drop versus #ow rate, showing #ow rate limitation.
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the original motivation behind the series of small computer models on which this paper
reports. Figure 4 shows #ow limitation when the pressure}area relation is made one step
more realistic, by allowing the cross-sectional area to decrease with negative transmural
pressure after collapse. The tube law was modi"ed for p(p

c
to

A"A
c
!A

p
(p

c
!p);

the value of A
p
("0)003) describes the compliance of the tube once collapsed. Whereas up to

now the collapsed area was always 0)2, now it decreases linearly below 0)2 with a slope
dA/dp"0)003 [Figure 4(a)]. [In the process, the model has acquired more of the character-
istics of a distributed model. Although previously the pressure was de"ned at all points
along the tube, it was simply a straight line joining lumped pressures at the ends which
could be evaluated without consideration of the interior of the tube other than the location
of collapse. Now the #ow rate is found from the speci"ed p

u
by solving a problem involving

integration of the pressure gradient along the tube. Of course, the model is still con"ned to
steady #ows, and has no concept of time-dependent distributed phenomena such as wave
travel.] The resulting curves of internal pressure versus position along the tube, including
the upstream and downstream sections external to the collapsible segment, are shown in
Figure 4(b), and the relation between p

1
!p

2
and Q in Figure 4(c). Comparison with Figure

3(b) shows that while the relation is little altered at lower p
1
!p

2
values, it becomes

progressively steeper; by p
1
!p

2
"50, Q is only 2)6, where previously it had reached 3)2.



Figure 4. As Figure 3, but with a "xed nonzero compliance once collapsed, allowing the tube resistance per unit
length to increase with further reduction in internal pressure, causing the internal pressure to decline progressively
faster along the tube after the collapse point. (a) Internal pressure along the collapsible tube itself versus area, for
each of the 16 p

u
-values solved. Only 14 curves are visible, because in two cases the tube did not collapse (A"1).

(b) Internal pressure versus position along the tube and in the rigid pipes. (c) Pressure drop versus #ow rate,
showing improved #ow rate limitation relative to Figure 3. The pressure drop is the di!erence between p(x) as in (b)

at x"0 and at x"1.
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Figure 5. As Figure 3, but with a progressively reducing nonzero compliance once collapsed. (a) Curves of
internal pressure against area. (b) Even more complete #ow rate limitation is the result, but #ow rate still always

increases with pressure drop; negative e!ort dependence is absent.
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This modi"ed pressure}area relation is of course still unrealistic even in the region where
collapsed compliance is now permitted, in that su$cient negative transmural pressure will
produce negative areas. In reality, collapsed tubes become sti!er as their area reduces. For
Figure 5, the tube law was therefore further modi"ed for p(p

c
to

A"A
c
!A

p
(p

c
!p)1@n,

where A
c
"0)25, A

p
"0)075, and n"4. Figure 5(a) shows the form of the resulting tube

law. Figure 5(b) shows that the e!ect on the #ow limitation is to steepen the progressively
steeper part of the curve; still less #ow rate is produced for a given high value of pressure
drop along the tube.

However, there is no sign of negative e!ort dependence in any of Figures 3}5. Nor is it
produced by introduction of "nite compliance for the tube between "rst buckling and "rst
opposite-wall contact (not shown), thereby avoiding a discontinuity in area along the tube.
Figure 6 shows sketches of what must transpire for negative e!ort dependence to occur,
based on ideas of Mead et al. (1967). Recall that as pressure drop increases from zero, the
#ow rate must start from zero, rise to a peak, then fall back to a level that it has previously
passed through. Figure 6(a) shows the expected situation when the #ow rate "rst attains that
level, here called Q

.*/
; the internal pressure has descended to the level p

c
at the downstream

end of the collapsible tube, i.e. p
2
"p

c
, where for #ow rate limitation p

c
is a "xed level below

p
1
. Turning to Figure 6(b), p

1
and p

e
have been increased in concert, and of course Dp

c
is

always "xed by the tube properties. The #ow rate has increased in Figure 6(b) beyond its
value in Figure 6(a), as indicated by the steeper slope of the pressure-drop pro"le in the rigid
pipe section beyond x"¸ and in the noncollapsed part of the tube starting at x"0; this



Figure 6. Sketches of negative e!ort dependence as manifested in a collapsed tube, after Mead et al. (1967):
(a) when #ow rate "rst reaches the eventual limit; (b) at or close to the peak #ow rate; (c) at the limiting #ow rate.
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situation prevails at and around the peak #ow rate. If, with still further increase in p
1
and p

e
,

the #ow rate is then to sink back to approximately that shown in Figure 6(a), p
2

must
fall back to its value in that sketch, and the pressure-drop pro"le must revert to that
slope everywhere except in a very short collapsed section of tube at the downstream end.
Figure 6(c) shows the "nal state; whereas at the #ow rate peak a substantial part of the
downstream end of the tube was collapsed, the high p

1
and predetermined #ow rate now

ensure that collapse must be limited to a small downstream segment, across which there is
a very large pressure drop, implying a high degree of collapse. In fact the #ow rate and
p
2

are still slightly greater than in Figure 6(a); were this not so, the pressure in the tube
would only descend to p

c
at exactly x "¸, and a "nite drop in pressure from p

c
to p

2
would

have to occur in zero collapsed-tube length, implying an unrealistic in"nite viscous resist-
ance in the collapsed section. Thus, after the peak #ow rate has been passed, Q

.*/
takes on

the aspect of a never-again-attained asymptote. Although these sketches are drawn with



Figure 7. A possible explanation of what determines how much peak #ow rate exceeds the #ow-limited #ow
rate. Pressure-drop pro"les are shown for two di!erent tubes, one of which changes its resistance much more when
it collapses than the other. A small ratio of resistances leads to a large degree of peak #ow rate excess over the #ow

rate limit.
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straight lines, implying the simplest two-"xed-resistances model, Figure 6(c) in fact forces
abandonment of the assumption that collapsed resistance per unit length is a "xed multiple
of open-tube resistance. It can be concluded that a more realistic tube law as shown in
Figure 5(a) is de"nitely necessary to the production of negative e!ort dependence; however,
on the basis of the outcome shown in Figure 5(b) it is not a su$cient condition.

The model with two "xed values of resistance per unit length can however be used to
provide a partial answer to the question: what might determine how much the peak #ow
rate of Figure 6(b) exceeds the "nal #ow rate of Figure 6(c)? Figure 7 shows sketches of the
variation of pressure along the tube as a function of position again, for two di!erent ratios
of collapsed-tube resistance per unit length to open-tube resistance. As in Figure 6, the ratio
corresponds to the ratio of the slope of the pressure-drop pro"le when collapsed to that
when open. Both pro"les are assumed to correspond to the position in Figure 6(b), where
the #ow rate is near or at its peak. The same values of p

1
and p

c
are used in both cases, but

the peak #ow rate (and p
2
) is much greater in the case where the collapsed tube increases its

resistance over the open tube by only a small factor; a large factor leads to a smaller peak
#ow rate. Note again, however, that this diagrammatic construction assumes that the peak
#ow rate is attained in the two tubes at the same value of p

1
; there is no necessary reason

why this should be so, and in fact in the absence of a speci"ed pressure}area relation the
argument does not determine the value of p

1
at peak #ow rate. Furthermore, despite the fact

that the two tubes have been assumed to behave so di!erently in terms of how much
resistance per unit length is augmented upon collapse, the same value of Dp

c
is assumed for

both. These are somewhat incompatible assumptions, so this use of the model must be
viewed with caution.

Finally, it should be noted that the failure of the present model to predict negative e!ort
dependence does not mean that viscous #ow limitation as opposed to wavespeed #ow
limitation (Gri$ths 1975; Wilson et al. 1986) is inherently unable to produce this e!ect.
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Hayashi et al. (1994) and Jensen (1998) have proved with rather more elaborate models of
viscous #ow limitation than that examined here that negative e!ort dependence can be
produced through this mechanism.

3. TAPERED-STIFFNESS TUBES

3.1. POSSIBLE COLLAPSE CONFIGURATIONS

Recently, there has been revived interest in the properties and behaviour of collapsed tubes
with tapering wall sti!ness along their length (Kamm et al. 1991, 1993; Ohba et al. 1998;
Bertram & Chen 2000), "rst mooted by Shapiro (1977). Such tubes can be simply modelled
by letting p

c
vary with distance along the tube, so that p

c
(x)"p

e
!Dp

c
(x), implying

a constant p
e
but a varying transmural pressure required to bring about collapse at di!erent

points. In this paper, a linear variation of tube sti!ness was assumed, such that

Dp
#
(x)"Dp

cl
#(Dp

c2
!Dp

cl
)
x

¸

.

The case where p
c
increases with distance in the stream-wise direction, corresponding to

decreasing sti!ness downstream, is relatively trivial; as in a uniform tube, there are still just
three possibilities: collapse along the whole length, collapse nowhere, or collapse from an
intermediate position as far as the downstream end. Figure 8 illustrates these behaviours.
For purposes of illustration, this model dispenses with pressure drop in the rigid section
upstream of the collapsible tube, i.e. ¸

u
"0, and the resistance per unit length when

collapsed is assumed to be four times that when the tube is open, i.e. R
c
/R

n
"4. Flow rates

from 0)05 incrementing by 0)05 up to 0)9 are shown.
Figure 8. Pressure-drop pro"les for a tapered-sti!ness tube arranged with its sti! end upstream. The e!ect is not
qualitatively di!erent from the case of a uniform tube. The horizontal dashed line shows a putative value of
p
e
"1)7, but the tube con"guration depends only on the sloping line of p

c
gained by subtracting the local

transmural pressure magnitude required for collapse (Dp
c
) from p

e
. Because of the taper, Dp

c
decreases with

distance along the tube.



Figure 9. Pressure-drop pro"les for a tapered-sti!ness tube arranged with its sti! end downstream, in which the
rate of sti!ness variation is insu$cient to o!set the viscous pressure drop along the tube even when the tube is
open. Although the tube still can only display collapse from an intermediate point to the far end, as in a uniform
tube, a new feature is that certain #ow rates (corresponding to pressure pro"les in dotted lines) cannot be produced
by adjustment of the pressure at the upstream end of the collapsible segment. Parameters as for Figure 8, except for

p
e

and Dp
c
(x) which are readily discerned from the Figure; Q from 0)05, increasing by steps of 0)022 to 0)5.
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Rather more varied possibilities occur when the taper is such that the tube gets sti!er
downstream. A functional de"nition of a tapered-sti!ness tube may be based on the
condition that the rate of sti!ness increase is su$cient that p

c
decreases faster than the

pressure in the open tube, i.e.

dDp
c

dx
'!

dp

dx
.

Figure 9 shows what happens when this condition is not met (for the case where the
upstream length is zero, i.e. p

1
is also the #ow-driving head). As in a uniform tube, if

collapsed at all, the tube always collapses up to the downstream end. However, a note-
worthy di!erence from uniform-tube behaviour is that there is a range of unattainable #ow
rates, indicated by the three pressure pro"les shown by dashed lines. To see how this arises,
consider the case of the lowest #ow rate above the excluded ones. This #ow rate causes
the pressure along the open part of the tube to decrease scarcely more rapidly than p

c
; the

pro"le and the p
c
line are almost parallel. Starting from zero pressure at the system exit, the

construction for the next lower #ow rate in this incremental series would present no
problem until the point where the steep pro"le in the downstream collapsed tube part met
the sloping p

c
line. But crossing that line would cause the pro"le to revert to a slope which

would bring it back below p
c
, suggesting a p

1
value corresponding to collapse all the way

along the tube and a lower #ow rate altogether. Two di!erent solutions to this dilemma
exist. If indeed #ow rate was the controlled variable in the putative corresponding experi-
ment, the result would be that p

1
"p

c
at the upstream end (x/¸"0) and the pro"le would



Figure 10. When the rate of streamwise sti!ness increase exceeds the rate of viscous pressure drop for the open
tube, the tapered-sti!ness tube can exhibit collapse from the upstream end as far as an intermediate point along the

tube. All parameters other than Dp
c
(x) as in Figure 8; Q from 0)05, increasing by steps of 0)055 to 0)9.
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follow the p
c
slope until collapse proper occurred at the appropriate intermediate point

along the tube. However, in practice, #ow rate has never yet been the controlled variable in
a collapsible-tube experiment. If the upstream pressure was controlled, as is usual experi-
mentally, then a jump in #ow rate across the dashed-line range would be observed.

A similar band of excluded #ow rates occurs if the sti!ness taper is such that p
c
decreases

more quickly than the pressure in the collapsed tube, as shown in Figure 10. In this case,
there are seven pro"les that could only be observed in a hypothetical controlled-#ow rate
experiment. This plot shows the de"ning characteristic of a tapered-sti!ness tube, that
collapse can cease at some intermediate point, having started at the upstream end; such
a tube only collapses as far as the downstream end if collapsed everywhere. Of course, this
functional de"nition means that whether a given tube behaves as tapered depends on the
resistance (here, rigid-tube length) downstream, and also on p

e
; as p

e
is varied, the whole

sloping line for p
c
moves vertically, intersecting open-tube pressure-drop lines of greater or

lesser slope.
What happens if the rate of pressure drop just equals the rate of p

c
decrease? This

apparently unlikely coincidence in fact occurs over substantial ranges of parameter space in
the model, because of the assumption that there is a "xed ratio of collapsed- to open-tube
resistance. As a result of this, the tube internal pressure is forced to track the p

c
line until it

can break away at an appropriate slope that reconciles the boundary conditions, as
occurred in Figures 9 and 10. Figure 11 illustrates this behaviour in the context of the usual
experimental situation, where p

u
is set then p

e
is varied, and the #ow rate "nds its own level.

Resistance per unit length when collapsed is here assumed to be three times that when the
tube is open. Figure 11(a}c) shows pressure-drop pro"les for a tapered-sti!ness tube at three
di!erent levels of p

e
, increasing from (a) to (c), leading to three di!erent lines of p

c
. Each

pressure pro"le corresponds to one p
c
(x)-line. At the lowest p

e
, the tube never collapses; at

the highest, it is collapsed all the way along. At the intermediate p
e

level, the problem of



Figure 11. Internal pressure p(x) along tapered-sti!ness tubes, when upstream head is constant (here, p
u
"1)4)

and external pressure is raised (see Table 1). The sloping broken line in each panel shows p
c
(x). Panels (a}c) show

one tube, with dDp
c
/dx"0)9; panels (d}g) show another, with dDp

c
/dx"0)8 (slightly less sti!ness taper). Panels

(a)}(c), for three successively greater values of external pressure, show (a) no collapse, (b) an internal pressure-
drop which exactly tracks the rate of sti!ness change down the tube, as far as the point where the tube reopens
fully, and (c) collapse of the whole tube. The resulting #ow rate, which corresponds to the slope of p(x) upstream or
downstream of the collapsible tube (x/¸(0 or x/¸'1), was Q"0)7, 0)6 and 0)35 for (a), (b) and (c), respectively.
With less taper, panels (d)}(g), for four successively greater values of external pressure, show (d) no collapse,
(e) tracking as in (b) but now all the way along the tube, (f ) tracking as far as where full collapse takes over, and
(g) collapse of the whole tube. The resulting #ow rate was Q "0)7, 0)6, 0)4 and 0)35 for (d), (e), (f ) and (g),

respectively.
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reconciling the boundary constraints of p
u
at the driving end and zero at the drain end is

solved by the tube tracking the p
c
line as far as the point where reverting to the open-tube

con"guration will meet zero pressure at the downstream end of the system. Note that,
whereas the instances of such tracking shown in Figure 10 were impossible experimentally,
short of arranging for #ow rate control, here tracking occurs under readily obtainable
conditions, except insofar as it depends on a "xed resistance ratio.

Tracking can also, as in Figure 9, be followed by full collapse. Figure 11(d}g) shows four
p
e
values, increasing from (d) to (g) for another tube, with a slightly smaller rate of sti!ness

taper. The extreme two p
e
values [panels (d) and (g)] lead to no collapse and collapse all

along as before. The second lowest [panel (e), with the second-lowest sloping broken p
c
line]

happens to be the case where tracking occurs all the way along the tube; this is indeed
a coincidence of parameter values which is not generic. The second highest [panel (f )] shows
p
c
-line tracking followed by full collapse as far as the downstream end of the tube.
Altogether then, for a tapered-sti!ness tube there are six possibilities:

(i) never collapsed,
(ii) collapsed all the way along,
(iii) collapsed as far as an intermediate point,
(iv) collapsed from an intermediate point to the end,
(v) the pressure drop follows the p

c
-line until full collapse,

(vi) the pressure drop follows the p
c
-line until the tube opens.

3.2. PRESSURE-DROP VERSUS FLOW RATE

Figure 12 shows how taper a!ects the relation between pressure-drop and #ow rate, under
conditions of prescribed #ow rate as in Figures 8}10. Resistance per unit length when the
tube is collapsed is here four times that when open. Panel 12(b) shows the pressure-
drop/#ow rate relation in the absence of taper; the usual regions I}III are visible. As noted
above, region II can be of positive slope when the downstream resistance is small, and this
tendency is reinforced here, relative to the case shown in Figure 1, by the use of a smaller
ratio (4, as opposed to 25) of collapsed to open resistance. Panel 12(a) deals with a tube of
the same average sti!ness along its length, but which is tapered so as to become thinner
downstream. The e!ect of the taper is to round the transition between regions II and III,
and because the maximum sti!ness (at the downstream end) is greater, to move the
transition from region II to region I to a higher #ow rate. The slope of region I is unchanged
from that of the uniform tube [panel 12(b)]; it is region II which has been elevated. Panel
12(c) shows the result of introducing mild sti!ness taper in the functionally important
direction (sti!er downstream). As yet the taper is insu$cient for the tube to satisfy the
functional de"nition above a tapered-sti!ness tube; consequently, the pressure pro"les are
qualitatively unchanged from the uniform tube case shown immediately above. However,
the relation between p

1
!p

2
and Q no longer exhibits a constant slope in region II, which

now takes over from region I at a lower #ow rate and gives way to region III at a higher #ow
rate than in the uniform tube. At no point does the region-II gradient attain the value it had
in the uniform tube, and as region III is approached it becomes negative. When the sti!ness
taper is increased [panel 12(d)], these trends become accentuated. Region II now splits into
two distinct sub-regions, one (here, of approximately zero slope) corresponding to the
region-II behaviour in panel 12(c), and the other, of negative slope, corresponding to those
#ow rates where p

c
-line tracking is followed by full collapse. Still greater sti!ness taper

[panel 12(e)] creates a situation where the whole of region II results from p
c
-line tracking

followed by tube re-opening. As with the tracking in panel 12(d), the region-II slope is then



Figure 12. E!ects of tube sti!ness taper on the relation between pressure drop and #ow rate, for prescribed #ow
rates (Q from 0)05, increasing by steps of 0)0525 to 0)995). p

e
is "xed at 1)7, and the average Dp

c
along the length of

the tube is "xed at 0)9; for the "ve cases shown, from top to bottom, (a) reverse taper*thinner downstream
(Dp

c1
"1)05, Dp

c2
"0)75), (b) no taper (Dp

c
"0)9), (c) slight forward taper*thicker downstream (Dp

c1
"0)8,

Dp
c2
"1)0), (d) increased forward taper with tracking followed by collapse (Dp

c1
"0)7, Dp

c2
"1)1), (e) yet more

forward taper with tracking followed by reopening (Dp
c1
"0)1, Dp

c2
"1)7). Regions I}III of the pressure drop/#ow

rate relation as referred to in the text are indicated on panel (b).
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necessarily negative, because p
1

is constant while p
2

increases with #ow rate. The intersec-
tion with region III occurs at a relatively high #ow rate, because reopening at points short of
the downstream end of the tube causes a steadily diminishing region-III slope.

Finally, what is the e!ect of taper on the pressure-drop/#ow rate relation under condi-
tions for #ow rate limitation? Can taper provide the missing ingredient needed to explain
negative e!ort dependence? Since real tubes display negative e!ort dependence in the
absence of taper, it would be surprising to "nd taper necessary in this model. The results
(not shown) are indeed negative as expected; moderate degrees of forward taper at least,
insu$cient to necessitate p

c
(x)-line tracking, do not cause negative d(p

1
!p

2
)/dQ. The e!ect

of forward taper (sti!er downstream) is to sharpen the knee in the #ow rate limitation
curves, relative to the case shown in Figure 4(c), while reverse taper produces a rounding of
the knee.

4. DISCUSSION

The series of models explored here have interest primarily as an answer to the question: how
basic can a collapsible-tube model be and still retain a given feature of observed collaps-
ible-tube behaviour? In respect of the main qualitative aspects, it emerges that even a very
simple model of the sort outlined here is adequate to predict or explain both pressure-drop
limitation and #ow rate limitation. This is a signi"cant achievement, because some more
sophisticated models have failed to do so. In particular, despite the inclusion of Bernoulli
e!ects and the Borda-Carnot head loss that approximates #ow separation at the end of the
collapsed tube, in addition to viscous head loss varying with area, lumped-parameter
models such as that of Bertram & Pedley (1982) failed to predict the appropriate shape of
pressure-drop/#ow rate curve when conditions for pressure-drop limitation were imposed.
Speci"cally, that particular model predicted pressure-drop-limitation curves bending so
that d(p

1
!p

2
)/dQ was greater than (p

1
!p

2
)/Q; as noted earlier, this shape actually de"nes

#ow rate limitation. Bertram & Pedley (1982) concluded that distributed models were
needed to overcome this problem. The simplest of the uniform-tube models examined here
are lumped, in the sense that when the tube law is simply a switch from one value of
resistance (or area) to another, the pressure pro"le consists of straight-line segments which
are known once their end-points have been calculated. However, in one important respect
the models are distributed: the position of collapse is variable. Thus, it is concluded that
variable collapse position is the essential element missing from a lumped-parameter model
which is needed to portray these behaviours correctly.

The pressure-drop/#ow rate curves arising from the uniform-tube models also raise
interesting questions about using the slope in region II ("xed p

e
) to assess stability. Conrad,

(1969), who introduced this idea, has tenaciously championed the criterion that self-excited
oscillation arises only when the region-II slope is su$ciently negative that the overall
system including up- and downstream parts has negative incremental resistance. While
many observations have tended to support this criterion, there have also been reports of
numerical (Matsuzaki & Seike 1996) and experimental (Ohba et al. 1989; Yamane & Orita
1992) oscillations occurring when the tube is in region III, suggesting that the criterion is
not de"nitive. The models examined here are for steady #ow only, and cannot say anything
directly about stability. Nevertheless, the "nding that the negative slope of region II can be
abolished by reducing the resistance downstream of the collapsible tube is problematic for
the Conrad criterion. A similar "nding was made by Hayashi & Sato (1988), using a one-
dimensional steady-#ow model that included viscous resistance. Experimentally, it is well
established (Bertram et al. 1990) that reducing downstream resistance promotes oscillatory
instability. While the published data relate to values of downstream resistance considerably
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greater than those examined here (relative to the resistance of the open collapsible tube),
unpublished observations from this laboratory con"rm that oscillations dominate when
downstream resistance is almost completely abolished.

The model also has utility in understanding some of the range of behaviours available to
a tube which varies in sti!ness along its length, as do many if not all body conduits. It
de"nes what degree of taper a tube must possess if required to behave functionally in one of
the special ways which characterize forward-tapered tubes. It also provides the simplest
possible tool with which to demonstrate the theoretical existence of these special con"gura-
tions, and to understand the observed variability of throat position for such tubes during
#ow.

Has p
c
-line tracking ever been observed experimentally? This may possibly be an

explanation for the observation of Bertram & Chen (2000) that multiple throats form when
a tapered-thickness tube is collapsed from the upstream end as far as an intermediate site.
These successive minima of area are only just visible, i.e. considered as a standing wave, the
amplitude is very weak, but up to four such minima have been seen. On this reading, these
waves represent attempts to depart from the p

c
-line on "rst one and then the other side. On

the other hand, a completely di!erent explanation is found in the idea of precursor waves
(Kececioglu et al. 1981). Again it should be emphasized that tracking depends on the
resistance of the collapsible tube switching between relatively "xed values, and is therefore
largely an artefact of the extremely crude model explored here. The prediction of unattain-
able #ow rates is more likely to be borne out experimentally, although again a more realistic
tube law would probably convert the discontinuity in Q(p

1
) to a small range of p

1
values

where #ow rate changed rapidly.
Negative e!ort dependence, or a decrease in #ow rate at around the knee representing the

onset of #ow rate limitation is apparently one phenomenon not comprehended by this
model series, at least insofar as parameter space has been explored. The construction in
Figure 6 showed clearly that one essential ingredient is a tube law allowing for more than
one "xed value of collapsed resistance per unit length as in the simplest variety of this series.
Yet exploration of tube laws giving "nite or variable compliance when the tube is collapsed,
and giving "nite compliance when it is moving from "rst buckling to opposite wall contact,
failed to produce negatively sloping pressure-drop/#ow rate curves when upstream trans-
mural pressure was held constant. Nor did reverse taper (sti!er upstream) or modest degrees
of forward taper provoke such an e!ect. It remains to be seen whether this is a result of
limited exploration of parameter space or whether the phenomenon requires inclusion of an
aspect of collapsible tubes omitted here. Interestingly, the lumped-parameter model of
Bertram & Pedley (1982) has no di$culty with negative e!ort dependence, since under
conditions of constant upstream transmural pressure it displays hyperbolic pressure-
drop/#ow rate curves (unpublished calculations). However, as noted already, this model
was unable to imitate pressure-drop limitation.

5. CONCLUSIONS

In conclusion, the most basic possible resistive model of a collapsible tube, together with
more elaborate variations, has been examined. It was found that the most basic model
showed realistic pressure drop/#ow rate characteristics under all three important condi-
tions: constant external pressure, constant downstream transmural pressure (pressure-drop
limitation), and constant upstream transmural pressure (#ow rate limitation). Comparison
with a past lumped-parameter model showed that the essential element permitting this
model to emulate these behaviours correctly was the movable collapse position. Endowing
the model with "nite collapsed compliance, with varying collapsed compliance, or with
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"nite compliance during collapse, although shown to be necessary, was not a su$cient
condition to produce negative e!ort dependence. The Conrad criterion for oscillation onset
was con"rmed to be inapplicable when downstream resistance is small, suggesting a more
general insu$ciency.

Adapted to the situation of tubes with wall sti!ness varying along their length, the model
showed that qualitatively new behaviours arise only for the situation where the sti!ness
increases in the streamwise direction, and gave rise to a functional de"nition of an e!ectively
tapered tube. Under the assumption of constant resistance per unit length both when open
and when collapsed, six possible tube con"gurations were found, and ranges of unattainable
#ow rate were shown to exist when #ow was propelled by a pressure head. Varying amounts
of sti!ness taper were shown to produce characteristic changes in the shape of the
pressure-drop/#ow rate relation at constant external pressure. Many of these "ndings are
novel. Those that are not are nevertheless illuminating for being derived from so basic and
comprehensible a model, which thus clearly shows which are the fundamental and essential
aspects of a collapsible tube. The diagrammatic nature of the model gives it a particularly
useful tutorial aspect.
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